1 /** \file
2  * \brief Image Processing - Global Operations
3  *
4  * See Copyright Notice in im_lib.h
5  */
6 module im.im_process_glo;
7 
8 version(IM) :
9 
10 import im.im_image : imImage;
11 
12 version(DigitalMars) version(Windows) { pragma(lib, "im_fftw.lib"); }
13 //version(DigitalMars) version(Windows) { pragma(lib, "im.lib"); } // required anyway
14 
15 extern(C) @nogc nothrow :
16 
17 
18 /** \defgroup transform Other Domain Transform Operations
19  * \par
20  * Hough, Distance.
21  *
22  * See \ref im_process_glo.h
23  * \ingroup process */
24 
25 /** Hough Lines Transform. \n
26  * It will detect white lines in a black background. So the source image must be a IM_BINARY image
27  * with the white lines of interest enhanced. The better the threshold with the white lines the better
28  * the line detection. \n
29  * The target image must have IM_GRAY, IM_INT, hg_width=180, hg_height=2*rmax+1,
30  * where rmax is the image diagonal/2 (rmax = srqrt(width*width + height*height)). \n
31  * The hough transform defines  "cos(theta) * X  + sin(theta) * Y = rho" and the parameters are in the interval: \n
32  * theta = "0 .. 179", rho = "-hg_height/2 .. hg_height/2" .\n
33  * Where rho is the perpendicular distance from the center of the image and theta the angle with the normal.
34  * So do not confuse theta with the line angle, they are perpendicular. \n
35  * Returns zero if the counter aborted. \n
36  * Inspired from ideas in XITE, Copyright 1991, Blab, UiO \n
37  * http://www.ifi.uio.no/~blab/Software/Xite/  \n
38  * Not using OpenMP when enabled.
39  *
40  * \verbatim im.ProcessHoughLines(src_image: imImage, dst_image: imImage) -> counter: boolean [in Lua 5] \endverbatim
41  * \verbatim im.ProcessHoughLinesNew(image: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
42  * \ingroup transform */
43 int imProcessHoughLines(const(imImage)* src_image, imImage* dst_image);
44 
45 /** Draw detected hough lines. \n
46  * The source and target images can be IM_MAP, IM_GRAY or IM_RGB, with data type IM_BYTE. \n
47  * Can be done in-place. \n
48  * If the hough transform is not NULL, then the hough points are filtered to include only lines
49  * that are significally different from each other. \n
50  * The hough image is the hough transform image, but it is optional and can be NULL.
51  * If not NULL then it will be used to filter lines that are very similar. \n
52  * The hough points image is a hough transform image that was thresholded to a IM_BINARY image,
53  * usually using a Local Max threshold operation (see \ref imProcessLocalMaxThreshold). Again the better the threshold the better the results. \n
54  * The detected lines will be drawn using a red color.
55  * If the target image is IM_GRAY, it will be changed to IM_MAP. \n
56  * If the target image is IM_RGB, then only the red plane will be changed.
57  * Returns the number of detected lines. \n
58  * Not using OpenMP when enabled.
59  *
60  * \verbatim im.ProcessHoughLinesDraw(src_image: imImage, hough: imImage, hough_points: imImage, dst_image: imImage) -> lines: number [in Lua 5] \endverbatim
61  * \verbatim im.ProcessHoughLinesDrawNew(image: imImage, hough: imImage, hough_points: imImage) -> lines: number, new_image: imImage [in Lua 5] \endverbatim
62  * \ingroup transform */
63 int imProcessHoughLinesDraw(const(imImage)* src_image, const(imImage)* hough, const(imImage)* hough_points, imImage* dst_image);
64 
65 /** Calculates the Cross Correlation in the frequency domain. \n
66  * CrossCorr(a,b) = IFFT(Conj(FFT(a))*FFT(b)) \n
67  * Images must be of the same size and only target image must be of type complex.
68  *
69  * \verbatim im.ProcessCrossCorrelation(src_image1: imImage, src_image2: imImage, dst_image: imImage) [in Lua 5] \endverbatim
70  * \verbatim im.ProcessCrossCorrelationNew(image1: imImage, image2: imImage) -> new_image: imImage [in Lua 5] \endverbatim
71  * \ingroup transform */
72 void imProcessCrossCorrelation(const(imImage)* src_image1, const(imImage)* src_image2, imImage* dst_image);
73 
74 /** Calculates the Auto Correlation in the frequency domain. \n
75  * Uses the cross correlation.
76  * Images must be of the same size and only target image must be of type complex.
77  *
78  * \verbatim im.ProcessAutoCorrelation(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
79  * \verbatim im.ProcessAutoCorrelationNew(image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
80  * \ingroup transform */
81 void imProcessAutoCorrelation(const(imImage)* src_image, imImage* dst_image);
82 
83 /** Calculates the Distance Transform of a binary image
84  * using an aproximation of the euclidian distance.\n
85  * Each white pixel in the binary image is
86  * assigned a value equal to its distance from the nearest
87  * black pixel. \n
88  * Uses a two-pass algorithm incrementally calculating the distance. \n
89  * Source image must be IM_BINARY, target must be IM_FLOAT.
90  *
91  * \verbatim im.ProcessDistanceTransform(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
92  * \verbatim im.ProcessDistanceTransformNew(image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
93  * \ingroup transform */
94 void imProcessDistanceTransform(const(imImage)* src_image, imImage* dst_image);
95 
96 /** Marks all the regional maximum of the distance transform. \n
97  * source is IMGRAY/IM_FLOAT target in IM_BINARY. \n
98  * We consider maximum all connected pixel values that have smaller pixel values around it.
99  *
100  * \verbatim im.ProcessRegionalMaximum(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
101  * \verbatim im.ProcessRegionalMaximumNew(image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
102  * \ingroup transform */
103 void imProcessRegionalMaximum(const(imImage)* src_image, imImage* dst_image);
104 
105 
106 
107 /** \defgroup fourier Fourier Transform Operations
108  * \par
109  * All Fourier transforms use FFTW library. \n
110  * The pre-compiled binaries for FFTW version 2.1.5 includes all the necessary files.
111  * The pre-compiled binaries for FFTW version 3.x depends on an external library, not provided.
112  * To build the code that uses FFTW version 3 you must define USE_FFTW3.
113  * \par
114  * FFTW Copyright Matteo Frigo, Steven G. Johnson and the MIT. \n
115  * http://www.fftw.org                                         \n
116  * See "fftw.h"
117  * \par
118  * Must link with "im_fftw" library. \n
119  * \par
120  * IMPORTANT: The FFTW lib has a GPL license. The license of the "im_fftw" library is automatically the GPL.
121  * So you cannot use it for commercial applications without contacting the authors.
122  * \par
123  * FFTW 2.x can have float or double functions, not both. \n
124  * FFTW 3.x can have both, but we use only one to keep the
125  * code compatible with version 2. \n
126  * So by default the pre-compiled binaries are built with "float" support only.
127  * \par
128  * See \ref im_process_glo.h
129  * \ingroup process */
130 
131 /** Forward FFT. \n
132  * The result has its lowest frequency at the center of the image. \n
133  * This is an unnormalized fft. \n
134  * Images must be of the same size. Target image must be of type float complex.
135  *
136  * \verbatim im.ProcessFFT(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
137  * \verbatim im.ProcessFFTNew(image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
138  * \ingroup fourier */
139 void imProcessFFT(const(imImage)* src_image, imImage* dst_image);
140 
141 /** Inverse FFT. \n
142  * The image has its lowest frequency restored to the origin before the transform. \n
143  * The result is normalized by (width*height). \n
144  * Images must be of the same size and both must be of type float complex.
145  *
146  * \verbatim im.ProcessIFFT(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
147  * \verbatim im.ProcessIFFTNew(image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
148  * \ingroup fourier */
149 void imProcessIFFT(const(imImage)* src_image, imImage* dst_image);
150 
151 /** Raw in-place FFT (forward or inverse). \n
152  * The lowest frequency can be centered after forward, or
153  * can be restored to the origin before inverse. \n
154  * The result can be normalized after the transform by sqrt(w*h) [1] or by (w*h) [2],
155  * or left unnormalized [0]. \n
156  * Images must be of the same size and both must be of type float complex.
157  *
158  * \verbatim im.ProcessFFTraw(image: imImage, inverse: number, center: number, normalize: number) [in Lua 5] \endverbatim
159  * \ingroup fourier */
160 void imProcessFFTraw(imImage* image, int inverse, int center, int normalize);
161 
162 /** Auxiliary function for the raw FFT. \n
163  * This is the function used internally to change the lowest frequency position in the image. \n
164  * If the image size has even dimensions the flag "center2origin" is useless. But if it is odd,
165  * you must specify if its from center to origin (usually used before inverse) or
166  * from origin to center (usually used after forward). \n
167  * Notice that this function is used for images in the the frequency domain. \n
168  * Image type must be float complex.
169  *
170  * \verbatim im.ProcessSwapQuadrants(image: imImage, center2origin: number) [in Lua 5] \endverbatim
171  * \ingroup fourier */
172 void imProcessSwapQuadrants(imImage* image, int center2origin);
173 
174 
175 
176 /** \defgroup openmp OpenMP Utilities
177  * \par
178  * Used inside im_process_omp only. But also exported to Lua.
179  * These functions do not use OpenMP,
180  * they are used when OpenMP is enabled in im_process.
181  * See \ref im_util.h
182  * \ingroup process */
183 
184 /** Sets the minimum number of iterations to split into threads. \n
185  * Default value is 250000, or an image with 500x500. \n
186  * Returns the previous value.
187  *
188  * \verbatim im.ProcessOpenMPSetMinCount(min_count: number) -> old_min_count: number [in Lua 5] \endverbatim
189  * \ingroup openmp */
190 int imProcessOpenMPSetMinCount(int min_count);
191 
192 /** Sets the number of threads. \n
193  * Does nothing if OpenMP is not enabled. \n
194  * Returns the previous value.
195  *
196  * \verbatim im.ProcessOpenMPSetNumThreads(min_count: number) -> old_min_count: number [in Lua 5] \endverbatim
197  * \ingroup openmp */
198 int imProcessOpenMPSetNumThreads(int count);